X–Ray

Computed radiography (CR) uses very similar equipment to conventional radiography except that in place of a film to create the image, an imaging plate (IP) made of photostimulable phosphor is used.
Computed radiography (CR) is often distinguished from Direct Radiography (DR). CR and DR have many similarities. Both CR and DR use a medium to capture x-ray energy and both produce a digital image that can be enhanced for soft copy diagnosis or further review. Both CR and DR can also present an image within seconds of exposure. CR generally involves the use of a cassette that houses the imaging plate similar to traditional film-screen systems, whereas DR typically captures the image directly onto a flat panel detector without the use of a cassette. Image processing or enhancement can be applied on DR images as well as CR images due to the digital format of each. There are many different types of DR detectors in use in medicine and industry. Each type has its own merits and distinctions and may be applied to certain imaging requirements based on these attributes.
The CR imaging plate (IP) contains a photostimulable storage phosphor layer (typically 0.1 to 0.3 mm thick), which store the radiation dose as a latent image within the phosphor layer as elevated electron energies. When the IP is then transported through the scanner (read out), the scanning laser beam causes the electrons to relax to lower energy levels (photostimulated luminescence), emitting light that is detected by a photo-multiplier tube, which is clocked at a specific resolution or pixel capture frequency, this signal then being converted to an electronic signal and significantly amplified. The electronic signal is then quantized via an ADC to discrete (digital) values for each pixel and placed into the image processor pixel map.
Computed Radiography systems are the most common in medical applications because they have proven reliability over more than two decades, flexibility to address a variety of clinical applications and lower costs to take multiple exam rooms digital. DR systems are generally sold as a full x-ray room replacements and tied to a single x-ray generator. But are also commonly sold as a DR Panel which simply takes the place of where the cassette is placed. These can be either wireless or teathered. CR IPs can be retrofitted to existing exam rooms and used in multiple x-ray sites since IPs are processed through a CR reader (scanner) that can be shared between multiple exam rooms.
The probability of a photoelectric absorption per unit mass is approximately proportional to Z3/E3, where Z is the atomic number and E is the energy of the incident photon. This rule is not valid close to inner shell electron binding energies where there are abrupt changes in interaction probability, so called absorption edges. However, the general trend of high absorption coefficients and thus short penetration depths for low photon energies and high atomic numbers is very strong. For soft tissue photoabsorption dominates up to about 26 keV photon energy where Compton scattering takes over. For higher atomic number substances this limit is higher. The high amount of calcium (Z=20) in bones together with their high density is what makes them show up so clearly on medical radiographs.
Compton scattering is the predominant interaction between X-rays and soft tissue in medical imaging. Compton scattering is an inelastic scattering of the X-ray photon by an outer shell electron. Part of the energy of the photon is transferred to the scattering electron, thereby ionizing the atom and increasing the wavelength of the X-ray. The scattered photon can go in any direction, but a direction similar to the original direction is a bit more likely, especially for high-energy X-rays. The probability for different scattering angles are described by the Klein–Nishina formula. The transferred energy can be directly obtained from the scattering angle from the conservation of energy and momentum.