Echocardiography

Doppler echocardiography is a procedure that uses ultrasound technology to examine the heart or blood vessels.
Unlike 1D Doppler imaging, which can only provide one-dimensional velocity and has dependency on the beam to flow angle, 2D velocity estimation using Doppler ultrasound is able to generate velocity vectors with axial and lateral velocity components. 2D velocity is useful even if complex flow conditions such as stenosis and bifurcation exist. There are two major methods of 2D velocity estimation using ultrasound: Speckle tracking and crossed beam Vector Doppler, which are based on measuring the time shifts and phase shifts respectively.
Vector Doppler is a natural extension of the traditional 1D Doppler imaging based on phase shift. The phase shift is found by taking the autocorrelation between echoes from two consecutive firings. The main idea of Vector Doppler is to divide the transducer into three apertures: one at the center as the transmit aperture and two on each side as the receive apertures. The phase shifts measured from left and right apertures are combined to give the axial and lateral velocity components. The positions and the relative angles between apertures need to be tuned according to the depth of the vessel and the lateral position of the region of interest.
A stress echocardiogram, also known as a stress echo or SE, utilizes ultrasound imaging of the heart to assess the wall motion in response to physical stress. First, images of the heart are taken "at rest" to acquire a baseline of the patient's wall motion at a resting heart rate. The patient then walks on a treadmill or utilizes another exercise modality to increase the heart rate to his or her target heart rate, or 85% of the age predicted max heart rate (age predicted max heart rate = 220 − patient's age). Finally, images of the heart are taken "at stress" to assess wall motion at the peak heart rate. A stress echo assesses wall motion of the heart; it does not, however, image the coronary arteries directly. Ischemia of one or more coronary arteries could cause a wall motion abnormality which could indicate coronary artery disease (CAD). The gold standard test to directly image the coronary arteries and directly assess for stenosis or occlusion is a cardiac catheterization. A stress echo is a non-invasive test and is performed in the presence of a licensed medical professional, such as a cardiologist, and a cardiac sonographer.
3D echocardiography (also known as 4D echocardiography when the picture is moving) is now possible, using a matrix array ultrasound probe and an appropriate processing system. This enables detailed anatomical assessment of cardiac pathology, particularly valvular defects, and cardiomyopathies. The ability to slice the virtual heart in infinite planes in an anatomically appropriate manner and to reconstruct three-dimensional images of anatomic structures make 3D echocardiography unique for the understanding of the congenitally malformed heart. Real Time 3-Dimensional echocardiography can be used to guide the location of bioptomes during right ventricular endomyocardial biopsies, placement of catheter delivered valvular devices, and in many other intraoperative assessments. The 3D Echo Box developed by the European Association of Echocardiography offers a complete review of Three Dimensional Echocardiography.
Contrast echocardiography, or Contrast-enhanced ultrasound is the addition of ultrasound contrast medium, or imaging agent, to traditional ultrasonography. The ultrasound contrast is made up of tiny microbubbles filled with a gas core and protein shell. This allows the microbubbles to circulate through the cardiovascular system and return the ultrasound waves creating a highly reflective image. The most commonly used types of ultrasound contrast are known as: Definity and Optison. Both have been approved by the FDA. There are multiple applications in which contrast-enhanced ultrasound can be useful.